Identities concerning Bernoulli and Euler polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arith . IDENTITIES CONCERNING BERNOULLI AND EULER POLYNOMIALS

We establish two general identities for Bernoulli and Euler polynomials, which are of a new type and have many consequences. The most striking result in this paper is as follows: If n is a positive integer, r + s + t = n and x + y + z = 1, then we have r s t x y n + s t r y z n + t r s z x n = 0 where s t x y n := n k=0 (−1) k s k t n − k B n−k (x)B k (y). It is interesting to compare this with...

متن کامل

On Identities Involving Bernoulli and Euler Polynomials

A class of identities satisfied by both Bernoulli and Euler polynomials is established. Recurrence relations for Bernoulli and Euler numbers are derived.

متن کامل

New identities involving Bernoulli and Euler polynomials

Using the finite difference calculus and differentiation, we obtain several new identities for Bernoulli and Euler polynomials; some extend Miki’s and Matiyasevich’s identities, while others generalize a symmetric relation observed by Woodcock and some results due to Sun.

متن کامل

Extended Zeilberger’s Algorithm for Identities on Bernoulli and Euler Polynomials

We present a computer algebra approach to proving identities on Bernoulli and Euler polynomials by using the extended Zeilberger’s algorithm given by Chen, Hou and Mu. The key idea is to use the contour integral definitions of the Bernoulli and Euler numbers to establish recurrence relations on the integrands. Such recurrence relations have certain parameter free properties which lead to the re...

متن کامل

Congruences concerning Bernoulli numbers and Bernoulli polynomials

Let {Bn(x)} denote Bernoulli polynomials. In this paper we generalize Kummer’s congruences by determining Bk(p−1)+b(x)=(k(p − 1) + b) (modp), where p is an odd prime, x is a p-integral rational number and p − 1 b. As applications we obtain explicit formulae for ∑p−1 x=1 (1=x ) (modp ); ∑(p−1)=2 x=1 (1=x ) (modp ); (p − 1)! (modp ) and Ar(m;p) (modp), where k ∈ {1; 2; : : : ; p− 1} and Ar(m;p) i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2006

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa125-1-3